Comparison of Machine Learning Approaches for Tsunami Forecasting
Session: Advances in the Science and Observation of Tsunamis [Poster]
Type: Poster
Date: 4/22/2021
Presentation Time: 03:45 PM Pacific
Description:
We have explored three different machine learning (ML) approaches for forecasting tsunami amplitudes (or full time series) at a set of forecast points, based on hypothetical short-time observations at one or more observation points. As a case study, we chose an observation point near the entrance of the Strait of Juan de Fuca, and two forecast points in the Salish Sea, one in Discovery Bay and the other in Admiralty Inlet, the waterway leading to southern Puget Sound. One ML approach considered is to extract features from the observed time series and use the extracted features in training a support vector machine (SVM) to predict the maximum amplitude at the forecast points. We also explored the use of two deep convolutional neural networks, a denoising autoencoder and a variational autoencoder to predict the full time series at the forecast points. These approaches also provide an estimate of the uncertainty in the predictions. As training data we use a subset of the 1300 synthetic CSZ earthquakes generated in the work of Melgar et al. 2016 [10.1002/2016JB013314] that is archived at [10.5281/zenodo.59943], reserving some as test data. As additional tests, the trained ML models have also been applied to other hypothetical CSZ earthquakes produced by very different approaches, such as the "L1 event" from the work of Witter et al. 2013 [10.1130/GES00899.1] that is used in the generation of tsunami inundation maps in Washington State. The ML models are capable of providing very good predictions from short duration observations, even when truncated before the first wave peak has reached the observation point.
Presenting Author: Christopher M. Liu
Student Presenter: Yes
Authors
Randall LeVeque Corresponding Author rjl@uw.edu University of Washington |
Christopher Liu Presenting Author cmhl@uw.edu University of Washington |
Donsub Rim dr1653@nyu.edu New York University |
Robert Baraldi rbaraldi@uw.edu University of Washington |
|
|
|
|
|
Comparison of Machine Learning Approaches for Tsunami Forecasting
Session
Advances in the Science and Observation of Tsunamis